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We study the response of a conical metallic surface to an external electromagnetic (em) field by representing
the fields in basis functions containing the integrable singularity at the tip of the cone. A fast analytical solution
is obtained by the conformal mapping between the cone and a round disk. We apply our calculation to the
scattering-type scanning near-field optical microscope (s-SNOM) and successfully quantify the elastic light
scattering from a vibrating metallic tip over a uniform sample. We find that the field-induced charge distribution
consists of localized terms at the tip and the base and an extended bulk term along the body of the cone far away
from the tip. In recent s-SNOM experiments at the visible and infrared range (600 nm to 1 μm) the fundamental
of the demodulated near-field signal is found to be much larger than the higher harmonics whereas at THz range
(100 μm to 3 mm) the fundamental becomes comparable to the higher harmonics. We find that the localized tip
charge dominates the contribution to the higher harmonics and becomes larger for the THz experiments, thus
providing an intuitive understanding of the origin of the near-field signals. We demonstrate the application of our
method by extracting a two-dimensional effective dielectric constant map from the s-SNOM image of a finite
metallic disk, where the variation comes from the charge density induced by the em field.
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The scattering-type near-field optical microscope
(s-SNOM) has made great advances over the past decade
by combining the well-developed atomic force microscope
(AFM) techniques with a wide range of tunable and broadband
light sources. By gathering the scattered light from an
AFM tip [see Fig. 1(a)], s-SNOM effectively probes the
near-field interactions between the nanometer-sized tip
apex and the sample surface, providing a spatial resolution
of 10 nm, far beyond the diffraction limit of traditional
optics [1–3]. It has shown to be extremely useful in probing
phase inhomogeneities in strongly correlated electron
materials [2,4–8], polaritonic waves in two-dimensional
materials [9–11], charge concentrations in semiconductor
nanostructures [12–14], and molecular nano-fingerprints
in organic and soft materials [15–17]. The central task of
quantitatively understanding the near-field signals comes down
to solving a nontrivial scattering problem, of which p-polarized
light of frequency ω elastically scatters from a cone-shaped
AFM tip, which oscillates vertically on the sample surface at
the mechanical resonance frequency � � ω of the cantilever.
Approaches from simple models such as the point dipole [18]
and rp models [19] to elongated spheroid models [21,22,24]
and state-of-the-art finite element calculations [20] have been
applied to this problem. Because of the singularity at the tip,
current approaches have not been able to consistently predict
the near-field phase of the signal accurately (see Fig. 3 below).
We find that the inverse extraction of the physical properties
of the sample from the scattering data with current numerical
approaches does not always produce unique results. It is
also extremely time consuming to solve the problem without
simplifying the approximation and this has limited the reliable
real-time interpretation of the experimental data.

Here we overcame the difficulty of the singularity at the
apex by using our recently developed technique [25–27] of
representing the fields in basis functions containing integrable
singularities at the tip obtained by conformal mapping between
the cone and a round disk and successfully quantifying the
elastic light scattering from a vibrating metallic tip. We found
that with p-polarized light, the field-induced charge distribu-
tion consists of a bulk term along the body of the cone far away
from the tip and localized terms at the tip apex and the base. The
scattering at the fundamental frequency ω + � comes from
both the bulk and the localized charges. The near-field higher
harmonic signals Sn at frequencies ω + n� experimentally
observed are dominated by contributions from the localized
charge at the tip. In recent s-SNOM experiments at the optical
to midinfrared range [2] (THz range) the fundamental is much
larger than (comparable to) the higher harmonics respectively.
Our calculation is in agreement with the empirical experiments
where we found that the tip charge at THz frequencies is
much larger than that at IR frequencies. To mimic the conical
AFM tip, there has been work with different less singular
tip geometries such as the spherical [18], the spheroidal
[21–23], and the pear shaped [24]. These calculations implied
different induced charge distributions. Our approach provides
a more systematic way to calculate the charge distributions for
different experimental conditions.

Our calculation is also orders of magnitude faster than
current approaches and makes this study suitable for efficiently
calculating the near-field signals and tip-sample interactions
over a wide range of frequencies all the way from visible to
terahertz with a fast and effective theoretical treatment. From
the s-SNOM image of a finite metallic disk, we demonstrate the
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FIG. 1. (a) Schematic representation of the scattering near-field
setup. The incident plane wave is p-polarized with the electric field
E(ω). (b) Schematics of the conformal mapping of the cone-shaped
tip to a round disk.

inverse extraction of a two-dimensional map which effectively
quantifies the charge density of a finite metallic surface induced
by an electromagnetic (em) field. We now describe our results
in detail.

We are interested in the current flow in a finite metallic film
wrapped in a cone shape caused by an external em wave. We
assume that the film is thin enough that there is no current in
the direction perpendicular to it. The current density j in the
presence of an external electric field Eext is governed by the
equation

ρj − Eem = Eext. (1)

where ρ is the resistivity, Eem is the electromagnetic field
generated by the current. We impose the boundary condition
of no current flow perpendicular to the boundary of the film
with a large boundary resistivity ρs which we take to approach
infinity [25–27]. The total resistivityρ is a sum of this boundary
term and a metal resistivity ρ0.

Because of the singularity at the tip, it is difficult to treat
the problem. Here we represent the currents and the fields
not in terms of finite elements on a mesh but in terms of a
complete set of orthonormal basis functions with the integrable
singularity of the system built in. This rigorous approach was
shown to be very efficient [25–27]. For the simple case of an
annulus of radii R1, R2, the basis functions are the well-known
vector cylindrical functions [26,27] Mm Nm [28] of angular
momentum m and with components Xr and X� (X = M,N )
in the radial and the angular directions. Here we are interested
in a conical film of height h, base radius a with the cone
angle θ = tan−1 a/h, thickness t , and a small flat tip of radius
b [Fig. 1(a)]. This geometry is closest to the experimental
setup among all the theoretical models. A point on the conical
surface and a point inside the annulus are characterized by the
cylindrical coordinates r and φ and R and � respectively. As
illustrated in Fig. 1(b), these can be mapped into each other
via a conformal harmonic map [29]

R = r1/ sin θ , � = φ.

The Jacobian of the transformation is J = R2 sin θ−2. We
construct the basis function for this surface from the vector
cylindrical harmonics of a circular annulus as

cX(r) = α{Xr [R(r)]e1 + X�e2,} (2)

where X = M,N, and α = 1/J 1/2 = R/r. The tangent vec-
tors on the surface of the cone are in the cylindrical ba-
sis (r,φ,z): e1 = 1/(1 + h2)1/2er − h/(1 + h2)1/2ez, e2 = eφ

With this choice, these generalized vector cylindrical har-
monics are orthonormal with the corresponding measure:∫

d2r(cXn)∗ · cYm = ∫
d2RJ |α|2Xn · Ym = δX,Y .

The electromagnetic field Eem can be represented as Eem =
−Z0j where the “impedance” matrix Z0 is just the representa-
tion of Green’s function in this basis [25–27]. These integrals of
Green’s function were computed numerically with a subroutine
that pays special attention to integrands with singularities. Just
as in our previous studies, when the basis functions are or-
thonormal, the off-diagonal elements of the impedance matrix
are much smaller than the diagonal elements. Furthermore the
magnitude of the impedance increases rapidly. These greatly
facilitate the convergence of the solution and provide for a
much better understanding of the physics.

In this notation, the circuit equation becomes

Zj = Eext + Es , (3)

where Z = Z0 + 1ρ0. The boundary electric field Es is the
product of the normal component of the current at the boundary
js and ρs(r), i.e. Es = jsρs, ρs(r) = 0 when r is not at the
boundaries. They behave like Lagrange multipliers. Their
values are determined from the condition that the normal
boundary currents become zero. Physically, as the external field
is applied, the current is stopped at the boundary and charges
of surface density σs are being accumulated. A boundary field
is generated until it reaches a value to oppose further current
arriving there.

In the experiment, there is an additional sample surface with
dielectric constant ε underneath the cone. The em field induced
charges of density nc on the surface. In the presence of the plane
at a distance d = d0(1 − cos �t) + dm from the tip, there will
be image charges of density ni(r − 2dez) = −βnc(r) and β =
(ε − 1)/(ε + 1). Because d is much less than the wavelength,
the method of image charges is a good approximation. The
total em field now has additional contributions from the image
charges, therefore the effective impedance Z is modified. We
have calculated the additional image circuit parameters and
included them in the circuit equations.

Because of the image charge, the tip surface field Es2 =
Esa + Esb is now a sum of a field Esa from a surface charge
of density σs at the tip and a field Esb from the image charge
density −βσs at a distance −d below the surface. From Gauss’s
law, Esa = σs/2ε0 and Esb ≈ −βσs/ε0I (2d), where I (x) =
〈Ecz〉 is the z Coulomb electric field from the image charge
density on the tip averaged over the tip. From these equations,
we get

σs = 2ε0Es2/[1 − 2βI (2d)]. (4)

We have calculated I (x) numerically and tabulated it for a mesh
of 4000 points in the region 0 < x/d0 < 2. Recent experiments
have been carried out at IR frequency with λ = 10 μm, h =
20 μm, a = 5 μm, b = 10 nm, d0 = 60 nm, t = 20 nm, and
dm = 0.6 nm and at THz frequency with λ centered at 300 μm,
h = 70 μm, a = 20 μm, b = 50 nm, d0 = 150 nm, and dm =
0.6 nm [2,30]. In the latter case, the tip is solid; the effective
thickness of the film is thus the skin depth ξ . For this case,
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FIG. 2. Magnitude of the expansion coefficient for the bulk
current density j c (a) in terms of the normal mode wave vector index
i in units of Eext/ρu and (b) as a function of its normalized distance
from the tip for parameters for two sets of experiments in the IR and
THz regimes.

t/a ≈ 0.01, whereas for the IR case, t/a = 4 × 10−3. We have
carried out calculations for these parameters. The incoming
field is at an angle of 60◦ with respect to the surface normal.
This field is nearly uniform across the tip. The coupling is thus
dominated by the m = 0 mode which we focus on.

We have calculated the circuit parameters Z for the m =
0 modes with the generalized vector cylindrical harmonics
cXm=0(kir) for up to 16 wave vectors ki . As usual, the
magnitude of Z increases as ki is increased. This makes the
problem rapidly convergent in our approach. The expansion
coefficients for the current density in the basis cN0(kir) are
shown in Fig. 2(a) where the nature of convergence of our
expansion is illustrated. The current density j = jcju is in units
of ju = Eext/ρu where the resistivity unit is ρu = Z0ωat/c, Z0

is the resistance of the vacuum. The IR experiments were
carried out at a higher normalized wave vector and thus have
more intermediate components. The magnitudes of the current
densities as a function of the normalized position on the cone
for both the IR and the THz experiments are shown in Fig. 2(b).
The charge density contains a bulk contribution from currents
inside the cone given by nc = −i∇ · j/ω. Because the current
density is nearly zero around the tip at z/h ≈ 0, its spatial
derivative and hence this bulk charge density is only nonzero
away from the tip at a distance much larger than d since d/h �
1. Thus this bulk charge will not contribute to near-field results.
The total “bulk” charges in units of Qu = ε0Eexta

2 for the THz
case [(−0.07+0.04i)] and the IR case [(−0.16+0.007i)] are
comparable in magnitude.

There are additional contributions to the charge from
the surface charge densities localized at the tip (σs2)
and the base (σs1). σsi = Esiσu where σu = 2ε0Eext.
For the IR case, Es1/Eext = 0.163 − 0.0168i,Es2/Eext =
4.374 + 6.23i. For the THz case Es1/Eext = 0.142 +
0.188i, Es2/Eext = −28.52 − 14.70i. The magnitude of the
surface charge at the tip in the THz case is five times larger
than that for the IR experiments. This comes about because the
wavelength of the external field is much closer to the size of
the cone for the THz experiments, Ei,ext is dominated by the
component with i = 1, as is illustrated in Fig. 2.

FIG. 3. (a) Our theoretical and experimental results for the ampli-
tude S2 and the phase φ2 of uniform SiO2 as a function of frequency.
(b) S2 and φ2 calculated with the rp model, point-dipole model, and
CST numerical solver, together with the experimental results.

We next look at the scattered field Sn at the modu-
lated frequencies ω + n� from the moving bulk and surface
charges. The scattered fields at a distance r from the tip are
proportional to the vector potential given by [31] A(r) =
iωμ0e

ikr
∫

dr′j(r ′)/r. The total current density of the vibrating
tip is a sum of a current induced by the incoming field and a
current jd = n∂td from the induced charge n and the vibration
of the tip ∂td.nc contains both bulk and boundary charge contri-
butions. The bulk charges contribute mainly to the fundamental
with n = 1. The contributions to the higher harmonics with
n > 1 are dominated by near-field contributions when the tip is
close to the surface and come mainly from the localized charge
at the tip. The radiation electric field Sn is proportional to the
Fourier transform at frequency ω + n� of the contributions jdl

to jd from the localized charges at the tip. From Eq. (4) we get

E ∝ eiωt (1 + β) cos(�t)/[1 − 2βI (d)]. (5)

As a test, we calculated the amplitude S2 and its phase as
a function of frequency using as input dielectric constants
corresponding to a uniform surface of SiO2. The experimental
results together with our calculations are shown in the Fig. 3(a).
The overall magnitude of the amplitudes and the baseline for
the phase depend on the experimental geometry and thus are
the two adjustable parameters. The agreement is very good.
For comparison, results obtained with commonly used simple
tip modeling as well as CST numerical simulation are plotted
in Fig. 3(b), which do not show as good agreement with the
experimental phase. This is due to the fact that finite-element
simulations with sharp objects (singularities) lead to large
mesh cell settings and therefore a lack of accuracy with
reasonable calculation time.

The fundamental is comparable and much larger than the
higher harmonics, respectively, in recent experiments carried
out at the THz and the IR frequencies. The localized tip
charge dominates the contribution to the higher harmonics and
becomes much bigger for the THz experiments, providing an
intuitive understanding of the origin of the near-field signals.

We close with an example of the inverse problem of ex-
tracting the physical properties from the measured [32] higher
harmonics response for a gold disk of diameter approximately
1.3 μm and thickness ≈50 nm. We calculated a table of
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FIG. 4. Experimental (a) amplitude and (b) phase of the third
harmonics as a function of position on the disk., and extracted values
of (c) Re[β] and (d) Im[β], respectively.

S3 and φ3 as functions of −0.1 < Re[β] < 1.4, − 0.5 <

Im[β] < 0.5 from Eq. (5) for a mesh of 6400 grid points.
This takes 2.7 s with a conventional Intel processor. For a
pixel at position r, we go through the entries in our table
and identify β(r) as the one such that |S3(β(r)) − S

expt
3 (r)| +

|φ3(β(r)) − φ
expt
3 (r)| is minimized. This calculation takes

0.77 s for a data set of 128 × 128 pixels, making real-time
data extraction possible.

Two-dimensional plots of β, S3, and φ3 are shown in
Fig. 4. Even though the material exhibits the same intrinsic
ε independent of position, there is a variation in the extracted
β from the average value. This is due to charge densities on
the disk induced by the incident em field. More precisely,
β is determined from the condition that the change of the
perpendicular component of the displacement field D⊥ at the
disk-air interface is equal to the surface charge density σdisk:
�D⊥ = σdisk. Our study of the em scattering on disks [26]
suggests that there is an edge electric field and its associated
charge at the perimeter of the disk. The variation of the physical
quantities is indeed dominated by changes at the perimeter,
in agreement with our expectation. An examination of the

quantitative values shows that the experimental amplitude and
phase of the third harmonics are well reproduced. We found
that Re[β] ≈ 1.2 (0), Im[β] ≈ 0.07 (0) inside (outside) the
disk [33]. This technique may also be a new tool for mapping
of the changes induced by external fields. The detailed analysis
of this will be discussed in a separate paper.

In conclusion, we study the elastic scattering of an em wave
by a conical metallic surface via representing the fields on the
surface in generalized vector cylindrical harmonics containing
the integrable singularities at the tip. We applied our calculation
to s-SNOM and found good agreement with experimental
results from a vibrating metallic tip over a uniform sample.
We found the field-induced charge distribution consists of a
bulk term along the body of the cone and localized terms at the
tip apex and the base. The bulk charge is far away from the tip
and contributes little to the near-field higher harmonics in the
scattered field. The localized boundary charges at the tip apex
contribute to the near-field signal and correspond to the charge
accumulation effects previously discussed in pn junctions and
on the surface of capacitor plates in ac experiments [34–36].
In these treatments, the additional physics of the diffusion of
the electrons are included and a finite width in the localized
charge distribution of the order of the screening length is
found. This localized boundary charge provides insight into
the physics of the scattering problem, which can be related
to the distinct S1/S2 ratio found in recent experiments at IR
and THz frequencies. In addition, we also demonstrate the
application of our technique by extracting a two-dimensional
effective dielectric constant map of a finite plasmonic metallic
disk from experimental data, which is nonuniform due to the
induced charge density distribution under the illumination of an
em field. Our calculations of the scattering signal and the back-
extraction process are more realistic and much faster compared
to the prevailing analytical and numerical approaches. Future
studies will include the calculation of near-field scattering
signals of nonuniform samples.
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